高考经验分享之如何训练数学拿高分能力(2)
这三题一般是解析几何,以及函数导数综合应用。 先讲解析几何,这个题型是我最头疼的。计算量大,运算复杂,有的题目非常难想到方法。在这里我就以此为例,教你们如何应对自己无法克服的弱项。 当时我为自己定下的
这三题一般是解析几何,以及函数导数综合应用。
先讲解析几何,这个题型是我最头疼的。计算量大,运算复杂,有的题目非常难想到方法。在这里我就以此为例,教你们如何应对自己无法克服的弱项。
当时我为自己定下的目标,数学就是130,我数学基础不好,再往高我可能就很难做到了。这个目标实际,但离当时的90几也有距离。
我把130拆分开来,综合自己的能力,得到下面的计划:选择 填空满分不能错;前三道大题不能扣分;而压轴题我大概只能拿到6分,也就是扣8分;倒数第二题能做两问,扣4分。而算到解析几何,一般是两问,就算我不做第二问,也不会影响130。
为什么要这么大方放弃解析几何第二问的7分呢?我前面说过了,这是应对不可克服障碍的方法。
当时我没少练过解析几何,但是练得再多,我发现到了考试的时候,我还是没有办法在15分钟内做完整道题。而解析几何第一问一般简单,3分钟就可以做完,但第二问浪费了我太多时间,还不一定做对。
所以我以后联系解析几何的时候,全部不练第二问。考试时,若是第二问不是简单的吐血,我都不会去做它,免得浪费时间。
这就是我的另一个方法,确定不可克服的弱点,放弃它。
我说的放弃,是绝对要有针对性的放弃。比如我的目标是130,我就可以在保证其他题目会的情况下,固定的放弃2小题,平时就不练习确定放弃的题型了。
这样做是为了提高时间和提分的比率。毕竟时间有限,要把时间放在提升快的部分。
下面讲讲重头戏函数、数列、导数的综合应用。
这一部分题目往往是难度比较大的,但我不主张大家放弃它。它的特点就是难想,但是一旦想到,解题就比较快。而想,却是我们平时可以训练的。
比如一题以数列为主的综合应用题,做多了题目的同学应该都知道,往往第一问就是求通项公式,这是数列题中最典型的一种题型,也是高考热点。就算是压轴题,第一问一定都不难。而这种通向公式的求法,高考中会考的方法只有几种。
至于哪几种方法,我告诉了你们,你们也不会用。只有自己找出来的规律,才能在解题中运用自如。
那么如何去自己寻找解题方法呢?我就可以在这两天,把手上所有套题中涉及求通向公式的题目全部找出来。只做那一问,其他不做。
也许第一题你不会,好,看答案。之后绝对不是把答案抄上去就可以,而是要一步步的看,去理解。第一步做了什么,为什么要这样做,第二步又做了什么,为什么这样做。..直到整个过程都明白了,再把答案盖上,自己再做一次。
自己都能做出来了,那么你就已经理解这一题了。但是不够,最后你要做的是总结,不依赖这道题,用文字把你整个解题的思维写下来,比如第一步干什么,第二步干什么。
比如当时我总结的一条:
在题目出现一个双数列项关系等式的时候,求通向公式的方法就是 1、求出一个较明显通向公式(一般是等差或者等比数列),2、把第一个求出来的数列项合并到一边,3、把1中的通向公式带入等式,求得第二条通向公式。
当然我这个只是一个示例,不一定对,但是要你们能够把经典题型总结成这种文字的普遍规律。下一次再遇到这种题型,把规律往里面套,就可以了。
这种总结方法不仅适用于数学,而且在化学大题更广泛的适用,在讲到化学的时候我也会再次提到它。
有不少同学问,什么时候该作总结。这这里就做出回答了,当你发现一种新的题型的时候。
当然很多同学会觉得这样做题非常浪费时间。没错,当时我试过一题做了一整个晚修。而我之所以让你们做套题,就是要你们有对高考题型的敏感度,知道哪种题型有可能考,哪种不会考。
这种总结方法,一定要有针对性,就是要用在高考常考的题型上。尤其是三角函数,概率问题,立体几何,解析几何中的求解析式,数列问题中求通向公式以及求和,这几种高考次次必考又搞不出新意的题型,屡试不爽。(责任编辑:www.360gaokao.com)
特别说明:由于各方面情况的不断调整与变化,360高考网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。如有出入,欢迎大家予以指正!