您现在的位置:主页 > 高考复习 > 数学复习 > 智力题 > 文章正文

智力大挑战—父与子

时间:2009-11-02 12:06 来源:互联网 作者:转载 点击:

  阿诺德、巴顿、克劳德和丹尼斯都是股票经纪人,其中有一人是其余三人中某一人的父亲。一天,他们在证券交易所购买股票的情况是:(l)

  阿诺德、巴顿、克劳德和丹尼斯都是股票经纪人,其中有一人是其余三人中某一人的父亲。一天,他们在证券交易所购买股票的情况是:(l)阿诺德购买的都是每股3美元的股票,巴顿购买的都是每股4美元的股票,克劳德购买的都是每股6美元的股票,丹尼斯购买的都是每股8美元的股票。

  (2)父亲所购的股数最多,他花了72美元。

  (3)儿子所购的股数最少,他花了24美元。

  (4)这四个人买股票总共花了161美元。

  在这四个人当中,谁是那位父亲?谁是那位儿子?

  (提示:根据(1)和(4)列出一个方程。依次假定某个人是那位父亲或者是那位儿子,则这个人买了多少股?如果一个数是方程中五项中四项的因数,则它必定也是第五项的因数。)


  答案

  设

  a为阿诺德所购的股数,

  b为巴顿所购的股数,

  c为克劳德所购的股数,

  d为丹尼斯所购的股数。

  于是,根据(1)和(4),就这四人购买股票总共所花的钱可写出方程:

  3a 4b 6c 8d=161。

  假定阿诺德是那位父亲,则根据(1)和(2),他买了24股;假定巴顿是那位儿子,则根据(1)和(3),他买了6股。如此等等,共有十二种可能,列表于下。

父亲(花了72美元) 儿子(花了24美元)

Ⅰ a=24 b=6
  Ⅱ
a=24 c=4
  Ⅲ
a=24 d=3
  Ⅳ
b=18 a=8
  Ⅴ
b=18 c=4
  Ⅵ
b=18 d=3
  Ⅶ
c=12 a=8
  Ⅷ
c=12 b=6
  Ⅸ
c=12 d=3
  Ⅹ
d=9 a=8
  Ⅺ
d=9 b=6
  Ⅻ d=9 c=4


  注意:(A)a、b、c、d都是正整数,(B)如果一个整数能整除一个具有五个项的方程中的四项,则它也一定能整除其中的第五项。

  根据上述的(B),a不能等于24或8,因为161不能被2整除。如果d等于3则b不能等于18,如果b等于6则d不能等于9,因为161不能被3整除。因此,Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅵ、Ⅶ、Ⅹ、和Ⅺ都被排除。

  如果d=9,c=4.则3a 4b=65.这样,a或b要大于9,从而与(2)矛盾。如果c=12,b=6则3a 8d=65。这样,a或d要小于6,从而与(3)矛盾。因此,Ⅷ和Ⅻ被排除。

  如果b=18,c=4.则3a 8d=65。3a必须是奇数,因为8d是偶数而65是奇数(偶数乘以任何整数总得偶数,偶数加上奇数总得奇数)。

  于是,a必须是4和18之间的一个奇数(奇数乘以奇数总得奇数)。这里唯一能使d取整数的是a=11。这意味着d=4,但这与(3)矛盾。因此,V被排除。

  剩下唯一的可能是Ⅸ,因此,克劳德是那位父亲,丹尼斯是那位儿子。

  通过进一步分析,可以得出a、b、c、d的两组可能值。由c=12,d=3,得3a 4b=65。根据与前面同样的推理,a必须是3和12之间的一个奇数。这里能使b取整数的只有a=7和a=11。于是得到这样两组可能的值:

a=7 a=11

b=11
b=8

c=12
c=12

d=3
d=3

(责任编辑:www.360gaokao.com)

特别说明:由于各方面情况的不断调整与变化,360高考网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。如有出入,欢迎大家予以指正!

    挑错 】【推荐】【打印

    网友意见留言板
    关于我们| About 360gaokao | 服务条款 | 广告服务 | 招聘 | 客服中心 | 网站导航
    Copyright © 1998 - 2009 360gaokao. All Rights Reserved
    360高考网 版权所有